Resource Summary Report

Generated by <u>dkNET</u> on May 21, 2025

Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas

RRID:SCR_022816 Type: Tool

Proper Citation

Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_022816)

Resource Information

URL: https://kimlab.io/brain-map/atlas/

Proper Citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_022816)

Description: Labels provide resource to isolate and identify mouse brain anatomical structures. Cell type specific transgenic mice and an MRI atlas were used to adjust and further segment the labels. Highly segmented anatomical labels in the adult mouse brain common coordinate framework.

Synonyms: Highly segmented anatomical labels in the adult mouse brain common coordinate framework.

Resource Type: data or information resource, atlas, reference atlas

Keywords: isolate and identify mouse brain, brain anatomical structures, transgenic mice, MRI atlas, segment the labels

Funding:

Availability: Free, Freely available

Resource Name: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas

Resource ID: SCR_022816

Record Creation Time: 20221005T050138+0000

Record Last Update: 20250519T204548+0000

Ratings and Alerts

No rating or validation information has been found for Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas.

No alerts have been found for Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>dkNET</u>.

Timonidis N, et al. (2024) Analyzing Thalamocortical Tract-Tracing Experiments in a Common Reference Space. Neuroinformatics, 22(1), 23.

Barraclough BN, et al. (2024) Direct comparison of Hoxb8-driven reporter distribution in the brains of four transgenic mouse lines: towards a spinofugal projection atlas. Frontiers in neuroanatomy, 18, 1400015.

Cecyn MN, et al. (2023) Where do you measure the Bregma for rodent stereotaxic surgery? IBRO neuroscience reports, 15, 143.