Resource Summary Report

Generated by dkNET on Apr 26, 2025

pyControl

RRID:SCR_021612

Type: Tool

Proper Citation

pyControl (RRID:SCR_021612)

Resource Information

URL: https://github.com/pyControl

Proper Citation: pyControl (RRID:SCR_021612)

Description: Open source software Python tool for behavioural experiment control. Part of

pyControl system.

Resource Type: software resource

Keywords: Software resource, OpenBehavior

Funding:

Availability: Free, Available for download, Freely Available

Resource Name: pyControl

Resource ID: SCR 021612

Alternate URLs: https://edspace.american.edu/openbehavior/project/pycontrol/

License: MIT License

Record Creation Time: 20220129T080356+0000

Record Last Update: 20250420T015131+0000

Ratings and Alerts

No rating or validation information has been found for pyControl.

No alerts have been found for pyControl.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 7 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Domingues AV, et al. (2025) Dynamic representation of appetitive and aversive stimuli in nucleus accumbens shell D1- and D2-medium spiny neurons. Nature communications, 16(1), 59.

Mendonça MD, et al. (2024) Dopamine neuron activity encodes the length of upcoming contralateral movement sequences. Current biology: CB, 34(5), 1034.

Deseyve C, et al. (2024) Nucleus accumbens neurons dynamically respond to appetitive and aversive associative learning. Journal of neurochemistry, 168(3), 312.

Rowland JM, et al. (2023) Propagation of activity through the cortical hierarchy and perception are determined by neural variability. Nature neuroscience, 26(9), 1584.

Akam T, et al. (2022) Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments. eLife, 11.

Schatz A, et al. (2022) LabNet hardware control software for the Raspberry Pi. eLife, 11.

Kapanaiah SKT, et al. (2021) A low-cost open-source 5-choice operant box system optimized for electrophysiology and optophysiology in mice. Scientific reports, 11(1), 22279.