Resource Summary Report

Generated by dkNET on Apr 26, 2025

Bonsai

RRID:SCR_021512

Type: Tool

Proper Citation

Bonsai (RRID:SCR_021512)

Resource Information

URL: https://github.com/bonsai-rx/bonsai

Proper Citation: Bonsai (RRID:SCR_021512)

Description: Software tool as event based framework for processing and controlling data streams. Open source software tool as visual language for reactive programming. Used for composing reactive and asynchronous data streams coming from video cameras, microphones, electrophysiology systems or data acquisition boards.

Resource Type: data acquisition software, software application, software resource, data processing software

Defining Citation: DOI:10.3389/fninf.2015.00007

Keywords: Reactive programming visual language, composing reactive data streams, composing asynchronous data streams, video cameras data, microphones data, electrophysiology systems data, data acquisition boards, OpenBehavior

Funding:

Availability: Free, Available for download, Freely Available

Resource Name: Bonsai

Resource ID: SCR_021512

Alternate URLs: https://edspace.american.edu/openbehavior/project/bonsai/

License: MIT License

Record Creation Time: 20220129T080356+0000

Record Last Update: 20250426T060812+0000

Ratings and Alerts

No rating or validation information has been found for Bonsai.

No alerts have been found for Bonsai.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Pierce AF, et al. (2024) Nucleus accumbens dopamine release reflects the selective nature of pair bonds. Current biology: CB, 34(3), 519.

Mendonça MD, et al. (2024) Dopamine neuron activity encodes the length of upcoming contralateral movement sequences. Current biology: CB, 34(5), 1034.

Yamanouchi HM, et al. (2023) Protocol to investigate the neural basis for copulation posture of Drosophila using a closed-loop real-time optogenetic system. STAR protocols, 4(4), 102623.

Amaro D, et al. (2021) Source identity shapes spatial preference in primary auditory cortex during active navigation. Current biology: CB, 31(17), 3875.