Resource Summary Report

Generated by dkNET on Apr 15, 2025

Physiome

RRID:SCR_017374

Type: Tool

Proper Citation

Physiome (RRID:SCR_017374)

Resource Information

URL: https://models.physiomeproject.org

Proper Citation: Physiome (RRID:SCR_017374)

Description: Repository of mainly CellML models powered by collection of software tools and libraries with PMR2 software suite as core power. Third party integration suites are RICORDO, Virtuoso, BiVeS/BudHat, OpenCOR, CombineArchive Web, WebCAT, Morre/MaSyMoS.

Abbreviations: PMR

Synonyms: Physiome Model Repository, PMR2

Resource Type: data or information resource, model, dynamic model, service resource,

data repository, storage service resource

Defining Citation: DOI:10.1093/bioinformatics/btq723

Keywords: Physiology, repository, CellML, cell, model, file, metadata, PMR2

Funding: British Heart Foundation;

Maurice Wilkins Centre for Molecular Biodiscovery; Virtual Physiological Human Network of Excellence;

Wellcome Trust

Availability: Free, Available for download, Freely available

Resource Name: Physiome

Resource ID: SCR_017374

Alternate URLs: http://www.cellml.org/tools/pmr/, http://models.cellml.org/

License: GPL, LGPL and MPL

Record Creation Time: 20220129T080335+0000

Record Last Update: 20250412T060115+0000

Ratings and Alerts

No rating or validation information has been found for Physiome.

No alerts have been found for Physiome.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Azer K, et al. (2021) History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in physiology, 12, 637999.

Guidry ME, et al. (2020) Insights From Computational Modeling Into the Contribution of Mechano-Calcium Feedback on the Cardiac End-Systolic Force-Length Relationship. Frontiers in physiology, 11, 587.

Afshar N, et al. (2019) Computational Modeling of Glucose Uptake in the Enterocyte. Frontiers in physiology, 10, 380.

Safaei S, et al. (2016) Roadmap for cardiovascular circulation model. The Journal of physiology, 594(23), 6909.