Resource Summary Report

Generated by dkNET on May 21, 2025

DINIES

RRID:SCR_016505

Type: Tool

Proper Citation

DINIES (RRID:SCR_016505)

Resource Information

URL: https://www.genome.jp/tools/dinies/

Proper Citation: DINIES (RRID:SCR_016505)

Description: Web server for predicting unknown drug-target interaction networks from various types of biological data in the framework of supervised network inference.

Abbreviations: DINIES

Synonyms: Drug target Interaction Network Inference Engine based on Supervised analysis

Resource Type: sequence analysis software, software resource, data analysis software, web application, software application, data processing software

Defining Citation: PMID:24838565

Keywords: predict, drug, target, interaction, network, biological, data, chemical, structure, protein, amino acid, sequence, domain, bio.tools

Funding: Ministry of Education;

Culture; Sports;

Science and Technology of Japan;

the Japan Science and Technology Agency; the Japan Society for the Promotion of Science

Availability: Free, Freely available

Resource Name: DINIES

Resource ID: SCR_016505

Alternate IDs: biotools:dinies

Alternate URLs: https://bio.tools/dinies

Record Creation Time: 20220129T080331+0000

Record Last Update: 20250521T061647+0000

Ratings and Alerts

No rating or validation information has been found for DINIES.

No alerts have been found for DINIES.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Wang J, et al. (2024) Targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for malate-aspartate shuttle and tumour progression. Clinical and translational medicine, 14(5), e1680.

Fathima S, et al. (2021) Network Analysis Identifies Drug Targets and Small Molecules to Modulate Apoptosis Resistant Cancers. Cancers, 13(4).

Sarsaiya S, et al. (2019) Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook. Bioengineered, 10(1), 469.