Resource Summary Report

Generated by <u>dkNET</u> on May 19, 2025

METAFLUIDICS

RRID:SCR_015763 Type: Tool

Proper Citation

METAFLUIDICS (RRID:SCR_015763)

Resource Information

URL: https://metafluidics.org/

Proper Citation: METAFLUIDICS (RRID:SCR_015763)

Description: Protocol repository for microfluidics experiments and chips. METAFLUIDICS provides a home for digital design files and other information necessary to reproduce or remix a microfluidic device.

Synonyms: METAFLUIDICS: Open Repository for Fluidic Systems

Resource Type: service resource, storage service resource, data repository

Keywords: fluidic, microfluidic device, digital design file, protocol repository, 3d printing, microchip

Funding:

Availability: Freely available, Available to the scientific community

Resource Name: METAFLUIDICS

Resource ID: SCR_015763

Record Creation Time: 20220129T080327+0000

Record Last Update: 20250517T060225+0000

Ratings and Alerts

No rating or validation information has been found for METAFLUIDICS.

No alerts have been found for METAFLUIDICS.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>dkNET</u>.

Mamontov V, et al. (2022) Persistence of plasmids targeted by CRISPR interference in bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 119(15), e2114905119.

McIntyre D, et al. (2022) Machine learning for microfluidic design and control. Lab on a chip, 22(16), 2925.

Swank Z, et al. (2021) CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions. Biodesign research, 2021, 2968181.

Winkler TE, et al. (2021) Sorption of Neuropsychopharmaca in Microfluidic Materials for In Vitro Studies. ACS applied materials & interfaces, 13(38), 45161.

Kaiser M, et al. (2018) Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nature communications, 9(1), 212.