Generated by <u>dkNET</u> on Apr 27, 2025

University of California at Davis Genome Center Proteomics Core Facility

RRID:SCR_012666 Type: Tool

Proper Citation

University of California at Davis Genome Center Proteomics Core Facility (RRID:SCR_012666)

Resource Information

URL: https://proteomics.ucdavis.edu/

Proper Citation: University of California at Davis Genome Center Proteomics Core Facility (RRID:SCR_012666)

Description: Core provides LC-MS/MS analysis including Protein ID, Proteomics Profiling, Targeted Proteomics and Post Translational Modification analysis. Analytical proteomic services are provided with emphasis on label free quantitative proteomic profiling, analysis of macromolecular complexes, post-translational modification of their constituents and standard protein identification from complex protein mixtures.

Synonyms: UCD Proteomics Core, University of California Davis Genome Center Proteomics Core Facility, UC Davis Proteomics Core, UC Davis Proteomics Core Facility

Resource Type: core facility, access service resource, service resource

Keywords: LC-MS/MS analysis, Protein ID, Proteomics Profiling, Targeted Proteomics, Post Translational Modification analysis,

Funding:

Availability: Open

Resource Name: University of California at Davis Genome Center Proteomics Core Facility

Resource ID: SCR_012666

Alternate IDs: SciEx_84, ABRF_2760

Alternate URLs: https://coremarketplace.org/?FacilityID=2760&citation=1

Old URLs: http://www.scienceexchange.com/facilities/proteomics-core-facility-uc-davis

Record Creation Time: 20220129T080311+0000

Record Last Update: 20250426T060306+0000

Ratings and Alerts

No rating or validation information has been found for University of California at Davis Genome Center Proteomics Core Facility.

No alerts have been found for University of California at Davis Genome Center Proteomics Core Facility.

Data and Source Information

Source: <u>SciCrunch Registry</u>

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>dkNET</u>.

Hsu E, et al. (2024) Reduction of ZFX levels decreases histone H4 acetylation and increases Pol2 pausing at target promoters. Nucleic acids research, 52(12), 6850.