Cancer Imaging Archive (TCIA)

RRID:SCR_008927
Type: Tool

Proper Citation

Cancer Imaging Archive (TCIA) (RRID:SCR_008927)

Resource Information

URL: http://www.cancerimagingarchive.net/

Description: Archive of medical images of cancer accessible for public download. All images are stored in DICOM file format and organized as Collections, typically patients related by common disease (e.g. lung cancer), image modality (MRI, CT, etc) or research focus. Neuroimaging data sets include clinical outcomes, pathology, and genomics in addition to DICOM images. Submitting Data Proposals are welcomed.

Resource Name: Cancer Imaging Archive (TCIA)

Proper Citation: Cancer Imaging Archive (TCIA) (RRID:SCR_008927)

Resource Type: Resource, database, data set, catalog, service resource, storage service resource, image repository, data repository, data or information resource

Keywords: dicom, imaging, ct, pet, pt, x-ray, mri, magnetic resonance, medical, clinical, research, clinical neuroinformatics, computed tomography, dicom, imaging genomics, magnetic resonance, pet, spect, test data, web service, image collection, image

Resource ID: SCR_008927

Parent Organization: Frederick National Laboratory for Cancer Research

Related Condition: Cancer

Funding Agency: NCI

Related resources: NIH Data Sharing Repositories
Availability: Restricted
Website Status: Last checked up
Alternate IDs: nlx_151749
Abbreviations: TCIA
Mentions Count: 55

Ratings and Alerts

No rating or validation information has been found for Cancer Imaging Archive (TCIA).
No alerts have been found for Cancer Imaging Archive (TCIA).

Data and Source Information
Source: SciCrunch Registry

Usage and Citation Metrics

We found 55 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.


cancer patients. European journal of nuclear medicine and molecular imaging, 46(2), 455-466.


Halani SH, et al. (2018) Multi-faceted computational assessment of risk and progression in
oligodendroglioma implicates NOTCH and PI3K pathways. NPJ precision oncology, 2, 24.