Global Proteome Machine Database (GPM DB)

RRID:SCR_006617
Type: Tool

Proper Citation

Global Proteome Machine Database (GPM DB) (RRID:SCR_006617)

Resource Information

URL: http://www.thegpm.org/

Description: The Global Proteome Machine Organization was set up so that scientists involved in proteomics using tandem mass spectrometry could use that data to analyze proteomes. The projects supported by the GPMO have been selected to improve the quality of analysis, make the results portable and to provide a common platform for testing and validating proteomics results. The Global Proteome Machine Database was constructed to utilize the information obtained by GPM servers to aid in the difficult process of validating peptide MS/MS spectra as well as protein coverage patterns. This database has been integrated into GPM server pages, allowing users to quickly compare their experimental results with the best results that have been previously observed by other scientists.

Resource Name: Global Proteome Machine Database (GPM DB)

Proper Citation: Global Proteome Machine Database (GPM DB) (RRID:SCR_006617)

Resource Type: Resource, data analysis software, data processing software, database, software application, service resource, storage service resource, software resource, data repository, data or information resource

Keywords: mass spectrometry, pattern, peptide, protein, proteome, scientist, spectra, tandem

Resource ID: SCR_006617

Website Status: Last checked up

Alternate IDs: nif-0000-10455

Alternate URLs: https://www.thegpm.org/GPMDB/index.html,
Abbreviations: The GPM

Mentions Count: 178

Ratings and Alerts

No rating or validation information has been found for Global Proteome Machine Database (GPM DB).

No alerts have been found for Global Proteome Machine Database (GPM DB).

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 178 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.


communication and signaling : CCS, 17(1), 162.


Vierra NC, et al. (2019) Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife, 8.


