Resource Summary Report

Generated by dkNET on May 19, 2025

Metabolomics Standards Initiative

RRID:SCR 003246

Type: Tool

Proper Citation

Metabolomics Standards Initiative (RRID:SCR_003246)

Resource Information

URL: http://www.metabolomics-msi.org

Proper Citation: Metabolomics Standards Initiative (RRID:SCR_003246)

Description: Oversight Committee appointed to monitor, coordinate and review the efforts of working groups (WG) in specialist areas (Biological context metadata WG, Chemical analysis WG, Data processing WG, Ontology WG, Exchange format WG) that will examine standardization and make recommendations.

Abbreviations: MSI

Resource Type: narrative resource, knowledge environment, controlled vocabulary, ontology, data or information resource, standard specification

Keywords: metabolomics, biological context, metadata, chemical analysis, data processing, exchange format

Funding:

Resource Name: Metabolomics Standards Initiative

Resource ID: SCR_003246

Alternate IDs: nlx_157308

Alternate URLs: http://msi-workgroups.sourceforge.net/

Record Creation Time: 20220129T080217+0000

Record Last Update: 20250517T055602+0000

Ratings and Alerts

No rating or validation information has been found for Metabolomics Standards Initiative.

No alerts have been found for Metabolomics Standards Initiative.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 14 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Fukushima A, et al. (2022) Development of RIKEN Plant Metabolome MetaDatabase. Plant & cell physiology, 63(3), 433.

Zhao Q, et al. (2018) Metabolomic profiles associated with bone mineral density in US Caucasian women. Nutrition & metabolism, 15, 57.

Deutsch EW, et al. (2017) Proteomics Standards Initiative: Fifteen Years of Progress and Future Work. Journal of proteome research, 16(12), 4288.

Haug K, et al. (2017) Global open data management in metabolomics. Current opinion in chemical biology, 36, 58.

Griffin PC, et al. (2017) Best practice data life cycle approaches for the life sciences. F1000Research, 6, 1618.

Kaput J, et al. (2017) Propelling the paradigm shift from reductionism to systems nutrition. Genes & nutrition, 12, 3.

Adam-Blondon AF, et al. (2016) Towards an open grapevine information system. Horticulture research, 3, 16056.

Gioria S, et al. (2016) A combined proteomics and metabolomics approach to assess the effects of gold nanoparticles in vitro. Nanotoxicology, 10(6), 736.

Wojakowska A, et al. (2015) Application of metabolomics in thyroid cancer research. International journal of endocrinology, 2015, 258763.

Lapatas V, et al. (2015) Data integration in biological research: an overview. Journal of biological research (Thessalonike, Greece), 22(1), 9.

Powers R, et al. (2014) The current state of drug discovery and a potential role for NMR

metabolomics. Journal of medicinal chemistry, 57(14), 5860.

González-Beltrán A, et al. (2014) The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again. BMC bioinformatics, 15 Suppl 1(Suppl 1), S11.

Sawada Y, et al. (2013) Integrated LC-MS/MS system for plant metabolomics. Computational and structural biotechnology journal, 4, e201301011.

van der Werf MJ, et al. (2007) Standard reporting requirements for biological samples in metabolomics experiments: microbial and in vitro biology experiments. Metabolomics: Official journal of the Metabolomic Society, 3, 189.