Resource Summary Report

Generated by dkNET on Apr 22, 2025

Reliable detection of directional couplings using rank statistics

RRID:SCR_001662

Type: Tool

Proper Citation

Reliable detection of directional couplings using rank statistics (RRID:SCR_001662)

Resource Information

URL: http://ntsa.upf.edu/downloads/chicharro-d-andrzejak-rg-2009-reliable-detection-directional-couplings-using-rank

Proper Citation: Reliable detection of directional couplings using rank statistics (RRID:SCR_001662)

Description: Source code that allows you to calculate the different measures used in Chicharro D, Andrzejak RG (2009): Reliable detection of directional couplings using rank statistics. Physical Review E, 80, 026217.

Abbreviations: Reliable detection of directional couplings using rank statistics

Resource Type: source code, software resource

Defining Citation: PMID:19792241

Keywords: directional coupling, time series, rank statistics, normalization, experimental

signal

Funding:

Availability: Acknowledgement requested, Free, For research and education purposes only, Non-commercial

Resource Name: Reliable detection of directional couplings using rank statistics

Resource ID: SCR_001662

Alternate IDs: nlx_153987

Record Creation Time: 20220129T080208+0000

Record Last Update: 20250421T053249+0000

Ratings and Alerts

No rating or validation information has been found for Reliable detection of directional couplings using rank statistics.

No alerts have been found for Reliable detection of directional couplings using rank statistics.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Morris EL, et al. (2021) Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. The EMBO journal, 40(20), e108614.