Resource Summary Report

Generated by <u>dkNET</u> on May 17, 2025

Massachusetts Institute of Technology; Massachusetts; USA;

RRID:SCR_000977 Type: Tool

Proper Citation

Massachusetts Institute of Technology; Massachusetts; USA; (RRID:SCR_000977)

Resource Information

URL: http://web.mit.edu/

Proper Citation: Massachusetts Institute of Technology; Massachusetts; USA; (RRID:SCR_000977)

Description: Independent, coeducational, privately endowed university, organized into five schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science.

Abbreviations: MIT

Synonyms: Massachusetts Institute of Technology (MIT), MIT; Cambridge; Massachusetts; United States, Massachusetts Institute of Technology; Cambridge; USA;

Resource Type: institution

Keywords: university, architecture, planning, engineering, humanities, arts, social sciences, management, science school, massachusetts institute, coeducation, independent

Funding:

Resource Name: Massachusetts Institute of Technology; Massachusetts; USA;

Resource ID: SCR_000977

Alternate IDs: SCR_016675, nlx_32884, grid.116068.8, ISNI: 0000 0001 2341 2786, Crossref funder ID: 100006919, Wikidata: Q49108

Alternate URLs: https://ror.org/042nb2s44

Record Creation Time: 20220129T080204+0000

Record Last Update: 20250420T014015+0000

Ratings and Alerts

No rating or validation information has been found for Massachusetts Institute of Technology; Massachusetts; USA;.

No alerts have been found for Massachusetts Institute of Technology; Massachusetts; USA;.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>dkNET</u>.

Wu X, et al. (2018) Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell, 172(3), 423.

Nuschke A, et al. (2016) Epidermal Growth Factor Tethered to ?-Tricalcium Phosphate Bone Scaffolds via a High-Affinity Binding Peptide Enhances Survival of Human Mesenchymal Stem Cells/Multipotent Stromal Cells in an Immune-Competent Parafascial Implantation Assay in Mice. Stem cells translational medicine, 5(11), 1580.