Resource Summary Report

Generated by <u>dkNET</u> on May 17, 2025

Nikon Eclipse TE2000 inverted microscope system

RRID:SCR_023161 Type: Tool

Proper Citation

Nikon Eclipse TE2000 inverted microscope system (RRID:SCR_023161)

Resource Information

URL: https://www.microscopyu.com/museum/eclipse-te2000-inverted-microscope

Proper Citation: Nikon Eclipse TE2000 inverted microscope system (RRID:SCR_023161)

Description: TE2000 was developed as full system with 3 models, the S, the U and the E. TE2000E is high precision Z-focus automated model that features 5 output ports and 5-way motorized light path changer. Used for advanced research that requires image capture in 3D, including confocal microscopy and deconvolution processing.TE2000U is universal model that comes with 4 output ports as standard, plus optional fifth user defined position, thereby providing unprecedented 5-way light path.The U model also features integrated magnification changer module providing 1x or 1.5x magnification to all ports.

Abbreviations: TE2000

Synonyms: Eclipse TE2000, Nikon Eclipse TE2000, Nikon Eclipse TE2000 inverted microscope

Resource Type: instrument resource

Defining Citation: PMID:20113077

Keywords: Instrument, Equipment, USEDit, Nikon, Eclipse, TE2000U, inverted microscope,

Funding:

Availability: Restricted

Resource Name: Nikon Eclipse TE2000 inverted microscope system

Resource ID: SCR_023161

Record Creation Time: 20230124T050216+0000

Record Last Update: 20250420T015243+0000

Ratings and Alerts

No rating or validation information has been found for Nikon Eclipse TE2000 inverted microscope system.

No alerts have been found for Nikon Eclipse TE2000 inverted microscope system.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>dkNET</u>.

Rolli S, et al. (2024) Clearing the JUNQ: the molecular machinery for sequestration, localization, and degradation of the JUNQ compartment. Frontiers in molecular biosciences, 11, 1427542.

Suárez-Delgado E, et al. (2023) Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid. eLife, 12.