Resource Summary Report

Generated by dkNET on May 18, 2025

University of Arizona W.M. Keck Center for Nano Scale Imaging Core Facility

RRID:SCR_022884

Type: Tool

Proper Citation

University of Arizona W.M. Keck Center for Nano Scale Imaging Core Facility (RRID:SCR_022884)

Resource Information

URL: https://cbc.arizona.edu/research/support-services/facilities/wm-keck-center-nano-scale-imaging

Proper Citation: University of Arizona W.M. Keck Center for Nano Scale Imaging Core Facility (RRID:SCR_022884)

Description: Interdisciplinary research facility in areas of imaging, nano-science and spectroscopy for measuring surface topography, surface properties, electrical measurements, fluorescence, sub-monolayer visible spectroscopy, and molecular structures.

Synonyms: University of Arizona W.M. Keck Center for Nano-Scale Imaging, W.M. Keck Center for Nano-Scale Imaging

Resource Type: core facility, service resource, access service resource

Keywords: USEDit, ABRF, imaging, nanoscience, spectroscopy, measuring surface topography, surface properties, electrical measurements

Funding:

Resource Name: University of Arizona W.M. Keck Center for Nano Scale Imaging Core

Facility

Resource ID: SCR_022884

Alternate IDs: ABRF_1583

Alternate URLs: https://coremarketplace.org/?FacilityID=1583&citation=1

Record Creation Time: 20221014T050208+0000

Record Last Update: 20250517T060520+0000

Ratings and Alerts

No rating or validation information has been found for University of Arizona W.M. Keck Center for Nano Scale Imaging Core Facility.

No alerts have been found for University of Arizona W.M. Keck Center for Nano Scale Imaging Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Dinh C, et al. (2024) Atomically Precise Graphene Nanoribbon Transistors with Long-Term Stability and Reliability. ACS nano, 18(34), 22949.

Guzmán LE, et al. (2024) Chemical Probes to Interrogate the Extreme Environment of Mosquito Larval Guts. Journal of the American Chemical Society, 146(12), 8480.

Isoe J, et al. (2023) Characterization of essential eggshell proteins from Aedes aegypti mosquitoes. BMC biology, 21(1), 214.

Li Y, et al. (2023) Influence of Halides on the Interactions of Ammonium Acids with Metal Halide Perovskites. ACS applied materials & interfaces, 15(20), 24387.