Resource Summary Report

Generated by dkNET on Apr 29, 2025

PlantProm DB

RRID:SCR_003359

Type: Tool

Proper Citation

PlantProm DB (RRID:SCR_003359)

Resource Information

URL:

http://linux1.softberry.com/berry.phtml?topic=plantprom&group=data&subgroup=plantprom

Proper Citation: PlantProm DB (RRID:SCR_003359)

Description: Annotated, non-redundant database of proximal promoter sequences for RNA polymerase II with experimentally determined transcription start site(s) (TSS) from various plant species. It contains 578 unrelated entries including 151, 396 and 31 promoters with experimentally verified TSS from monocot, dicot and other plants, respectively (April 2014). This DB presents the published promoter sequences with TSS(s) determined by direct experimental approaches and therefore serves as the most accurate source for development of computational promoter prediction tools.

Abbreviations: PlantProm

Synonyms: Plant Promoter Database, PlantProm DB

Resource Type: data or information resource, database

Defining Citation: PMID:12519961

Keywords: proximal promoter sequence, rna polymerase ii, transcription start site, promoter, monocot, dicot, dna sequence, taxonomy, promoter type, nucleotide frequency matrix, nucleotide composition, motif, transcription, regulatory element

Funding: Pakistan European Union

Resource Name: PlantProm DB

Resource ID: SCR_003359

Alternate IDs: nif-0000-03308, OMICS_01875

Old URLs: http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom

Record Creation Time: 20220129T080218+0000

Record Last Update: 20250429T054827+0000

Ratings and Alerts

No rating or validation information has been found for PlantProm DB.

No alerts have been found for PlantProm DB.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 8 mentions in open access literature.

Listed below are recent publications. The full list is available at dkNET.

Brooks EG, et al. (2023) Plant Promoters and Terminators for High-Precision Bioengineering. Biodesign research, 5, 0013.

Wang H, et al. (2021) Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus. BMC plant biology, 21(1), 6.

Kojima T, et al. (2019) Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC plant biology, 19(1), 576.

Alves GSC, et al. (2017) Differential fine-tuning of gene expression regulation in coffee leaves by CcDREB1D promoter haplotypes under water deficit. Journal of experimental botany, 68(11), 3017.

Shahmuradov IA, et al. (2017) TSSPlant: a new tool for prediction of plant Pol II promoters. Nucleic acids research, 45(8), e65.

Yang J, et al. (2015) A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance. Scientific reports, 5, 14299.

Company N, et al. (2014) Production of phytotoxic cationic ?-helical antimicrobial peptides in

plant cells using inducible promoters. PloS one, 9(11), e109990.

Azad AK, et al. (2011) Prediction of plant promoters based on hexamers and random triplet pair analysis. Algorithms for molecular biology: AMB, 6, 19.