Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Telmisartan-mediated metabolic profile conferred brain protection in diabetic hypertensive rats as evidenced by magnetic resonance imaging, behavioral studies and histology.

European journal of pharmacology | 2016

Type 2 diabetes and hypertension are associated with cognitive dysfunction that includes pathological changes in brain tissue. It was speculated that the beneficial hypotensive effect of telmisartan, an angiotensin receptor 1 blocker, and its unique hypoglycemic effect due to its PPARγ-activation, could ameliorate the ​ pathological changes in the brain​ that accompany​ these diseases. We examined the effect of telmisartan on brain changes in magnetic resonance imaging (MRI) T2-weighted scans, and behavioral and histological findings in the Cohen-Rosenthal Diabetic Hypertensive (CRDH) rat. Baseline and post-treatment values with telmisartan/vehicle (3 months) of blood pressure, blood glucose levels, behavioral tests, brain MRI scanning and immunohistological staining were obtained. Telmisartan significantly lowered blood pressure and blood glucose levels; induced consistent T2 reduction in specific gray and white regions including hippocampus, corpus callosum, amygdala and cortical regions; and significantly improved performance on behavioral tasks. Immunohistological analysis of the brain revealed significant amelioration of diabetes/hypertension-induced changes in white matter regions and microglia, evidenced by preserved myelin (LBF marker), and improved microglial neuronal markers GFAP, GAP43 and Iba1 expression. In conclusion, the behavioral performance, longitudinal MRI study and histology staining revealed the protective effects of telmisartan on brain microstructure and cognitive function.

Pubmed ID: 27417654 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

BioImage Suite (software resource)

RRID:SCR_002986

Web applications for analysis of multimodal/multispecies neuroimaging data. Image analysis software package. Has facilities for DTI and fMRI processing. Capabilities for both neuro/cardiac and abdominal image analysis and visualization. Many packages are extensible, and provide functionality for image visualization and registration, surface editing, cardiac 4D multi-slice editing, diffusion tensor image processing, mouse segmentation and registration, and much more. Can be intergrated with other biomedical image processing software, such as FSL, AFNI, and SPM.

View all literature mentions